
 Page 1 

The SpeedChex Web Service API for Merchants 

Remote Deposit Commands 
Version 1.0 

 

 

Introduction 
 

The Remote Deposit Commands detailed in this API document give Merchants a comprehensive and 

feature-rich solution that facilitates the scanning and “remote deposit” of paper checks into merchant bank 

accounts.  Scanned checks submitted through this API to the SpeedChex Gateway will be converted into 

either ACH or Check 21 (IRD) transactions and processed to the Federal Reserve for deposit. 

 

To submit checks for remote deposit through this API, the paper checks must be scanned using a scanner 

that images both the front and back sides of the check at a minimum resolution of 200 dpi.  The scanner 

must also capture MICR information (the routing number, account number, and check number) from the 

bottom of each check  

 

Merchants have the option to use the SpeedChex Gateway as their storage medium for all data and images 

captured from each check.  The transaction-level management commands defined in this API allow your 

software to interact with the stored check data allowing your users to retrieve, review and update each 

remote deposit transaction until all transactions in a batch are ready for deposit. 

 

Traditionally, users processing scanned checks would review and manually input non-scanned check 

information like the amount (required) or the payer name (optional) or manually correct scanning errors.  

The SpeedChex Gateway offers a technology called SpeedChex SmartScan which performs image 

character recognition to capture and/or correct information from the check image.  A detailed list of the 

features available from SpeedChex SmartScan product are available later in this document. 

 

 

The SpeedChex Gateway and the Command/Response System 
 

The SpeedChex Gateway supports procesing for multiple payment methods including credit cards, ATM 

pin-debit cards, electronic checks (ACH), and remote deposit of scanned checks (Check 21).   

 

Software applications can communicate with the SpeedChex Gateway through multiple, established 

Internet protocols, including the following: 

 

• SOAP 1.2 Web Services w/MTOM attachment support 

• Microsoft WCF Web Services (in development) 

• Traditional HTTP POST 
 

Although each of these communication protocols requires API documentation that is specific to the 

functionality of that protocol, each API shares a common command/response method for interacting with 

the gateway.   

 

Simply put, your software issues a command to the SpeedChex Gateway to accomplish any specific task 

and the gateway will send back a formatted response to your command.   

 



 Page 2 

The Command/Response system is quite extensive and supports the ability to perform a variety of 

transaction management tasks including: 

 

• Creating/Authorizing new payment transactions 

• Uploading batches of transactions 
• Modifying/Cancelling existing transactions or batches 

• Retrieving reports 
• Querying payment data 

  

This document, like all other API documents for the SpeedChex Gateway, is targeted toward a specific 

subset of commands that are grouped according to either payment method, the task(s) to be performed, or 

both. 

 

 

Remote Deposit (Check 21) Commands 
 

The following is a list and brief explanation of the Remote Deposit Commands that can be issued through 

the SpeedChex Web Service API: 

 
o RemoteDepositBatch.CreateNewBatch – Creates a new Remote Deposit Batch for placing, managing 

and utlimately processing scanned checks for remote deposit. 
 

o RemoteDepositBatch.AddTransaction – Adds a check to a new or existing Remote Deposit Batch.  
 

o RemoteDepositBatch.UploadBatch – Executes an array of RemoteDepositBatch.AddTransaction 
commands allowing you to add multiple transactions in “batch mode” to a new or existing Remote Deposit 
Batch.  This command would be equivalent to sending a RemoteDepositBatch.CreateNewBatch command 
and then sending multiple RemoteDepositBatch.AddTransaction commands each separately   

 
o RemoteDepositBatch.MarkForDeposit – Changes the state of a Remote Deposit Batch to ‘Mark for 

Deposit’ causing it to process on the next process cut-off for the specified scheduled deposit date.  
 

o RemoteDepositBatch.HoldForReview – Changes the state of a Remote Deposit Batch to ‘Hold for 
Review’ which holds the batch for user review/edit until it is ready for deposit  
 

o RemoteDepositBatch.VoidBatch – Cancels a Remote Deposit Batch that has not yet been sent to the 
Federal Reserve.  All transaction data and images associated with the batch will be deleted permanently. 

 
o RemoteDepositBatch.ModifyTransaction – Modifies any element of a transaction as long as the batch 

containing the transaction is still in Review mode (has not yet been deposited). 
 

o RemoteDepositBatch.RemoveTransaction – Removes a transaction from a batch as long as the batch 
containing the transaction is still in Review mode (has not yet been deposited). 
 

o RemoteDepositBatch.ReviewAllTransactions – Downloads all transactions from a batch for review.  Only 
transactions from a batch that is still in Review mode can be modified or removed. 
 

o RemoteDepositBatch.ReviewSingleTransaction – Downloads a single transaction for review.  Only 
transactions from a batch that is still in Review mode can be modified or removed. 
 

Please note:  Greyed-out commands will be implemented in a future update of this API. 

 

 

 

 



 Page 3 

Conceptualizing Remote Deposit Batches  
 

Paper checks can be scanned and sent individually in real-time or combined and sent with other scanned 

checks as a batch upload.  Regardless of how scanned check transactions are sent, each remote deposit 

transaction must be assigned to a conceptual Remote Deposit Batch for processing.   

 

A new Remote Deposit Batch can be created in one of three ways: 

 

1. Sending a RemoteDepositBatch.CreateNewBatch command with a new, unique BatchID.  This 

method is helpful when you want to explicity initialize a Remote Deposit Batch with a certain 

batch state without loading transactions yet. 

 

2. Sending a RemoteDepositBatch.AddTransaction command that specifies a previously unused 

BatchID value.  This method is helpful if you submit Remote Deposit transactions in real-time and 

you want the first transaction of the day to implicity create the Remote Deposit Batch. 

 

3. Sending a RemoteDepositBatch.UploadBatch command that specifies a previously unused 

BatchID value.  This method is used when you want to implicity create the Remote Deposit Batch 

when you upload a batch of Remote Deposit transactions. 

 

From that point forward, you can add single transactions or batches of transactions to an existing Remote 

Deposit Batch by simply specifying the same Batch ID of the existing Remote Deposit Batch.  Of course, 

if a batch has been sent to the Federal Reserve for processing, you will no longer be able to append 

transactions to that batch. 

 

 

Remote Deposit Batch States  
 

It is the nature of the remote deposit process that a person must review each scanned check for data errors 

and supply additional information that was not captured by the scanner.   

 

This API has been designed to facilitate this process of reviewing and updating data for remote deposit 

transactions.  As a result, a Remote Deposit Batch can be assigned one of the following states: 
 

 

Possible Remote Deposit Batch States 
 

Batch State Description 

Hold for Review Batch will be held indefinately so users can review 
and update transaction information as needed. 

Mark for Deposit Batch will be scheduled for processing (deposited) at 
the next processing cut-off time based on the batch 
deposit date specified.  Transactions can still be 
reviewed and updated until the batch is processed. 

Deposited Batch has been sent to Federal Reserve for 
processing and is now closed.  Transactions can be 
reviewed but not changed. 

Cancelled Batch was manually cancelled and will not be 
processed unless the batch state is modified 

 

 



 Page 4 

A Remote Deposit Batch should be assigned the state of  ‘Hold for Review’ when one or more of the 

following scenarios is true: 

 

• When users still need to review, update or confirm accuracy of scanned check data. 

• When taking advantage of the SpeedChex SmartScan technology to capture data that must be 

reviewed and updated or confirmed for accuracy. 

• When uploading multiple transactions or batches to the same Remote Deposit Batch over time. 

 

Once a Remote Deposit Batch in ‘Hold for Review’ state is assumed to be complete and accurate, a 

command can be issued to change the batch state to ‘Mark for Deposit’ which will cause the batch to be 

processed.   

 

Many Merchants will have their own facilities for storing, reviewing and updating transaction data and 

images and may opt not to use SpeedChex SmartScan technology.  In this instance, the ‘Hold for Review’ 

state is not needed.   The Merchant would simply create a Remote Deposit Batch, add the transactions to 

the batch, and assign the batch state to ‘Mark for Deposit’. 

 

Please note that an error will be returned if you attempt to change the state of a Remote Deposit Batch  to 

‘Mark for Deposit’ or upload an entire batch at once with a batch state of ‘Mark for Deposit’ and required 

data is missing from any transaction in the batch.  Similarly, an error will occur if the state of a Remote 

Deposit Batch is already set to ‘Mark for Deposit’ and you attempt to add more transactions to the batch. 

 

Transactions in batches of any state can be downloaded for review at any time, but only transactions in a 

Remote Deposit Batch with the batch state set to ‘Hold for Review’ can be  modified or cancelled.   

 

 

Taking Advantage of SpeedChex SmartScan Technology 
 

<content will be added in future update of  this API> 

 

 

Important Rules Regarding Customer Notification and SEC Codes  
 

There are three types of check conversion that can be implemented by a business and each method has a 

specific three-letter code assigned to it called the SEC Code: 

 

• Back Office Conversion – Allows businesses to collect checks written at a business payment 

counter or point-of-sale and convert them to electronic payments later in a centralized location.  The 

SEC Code is BOC. 

 

• Point of Purchase – Used for checks written at a point of sale, voided, returned immediately to the 

customer, and processed as a converted check.  The SEC Code is POP. 

 

• Accounts Receivable Entry – Mailed checks used for bill payment that are converted into 

electronic payments by the billing company.  The SEC Code is ARC. 

 

The banking industry in cooperation with the federal and state governments has setup very specific rules 

regarding the implementation of these check conversion methods in a business environment.  These rules 

address (1) the notification to customers that their check will be converted into an electronic transaction, 



 Page 5 

(2) the ability for a customer to opt-out of such conversion, and (3) the proper use of SEC Codes to 

indicate which method of check conversion was used to convert the paper check into an electronic item. 

 

When sending remote deposit transactions through this API, please make sure to specify the proper SEC 

Code based on which conversion method was used in the merchant’s business environment. 

 

For more information regarding the the implementation of customer notification and opt-out rules, please 

visit the following website published by NACHA: 

 

 http://www.electronicpayments.org/businesses/bs.check-conversion.how.php 

 

Note:  If NACHA decides to audit a merchant or processor, part of the audit process may require 

providing proof of the authorization method (SEC Code) specified when the transaction was created.  

Failure to properly comply and provide proof of the authorization can result in fines for each transaction 

in violation, so it is important that you correctly indicate the correct SEC Code and maintain good records 

of your authorizations.  Additional information about SEC Codes can be provided upon request. 

 

 

Unique Transaction Identification  
 

Proper communication between two separate transaction management applications (like this gateway and 

your software application) requires that both applications share a common, unique reference for each 

transaction in order for the two application to communicate intelligently.   

 

For example, to modify or cancel a pending transaction, your software will need to supply a reference id  

that both systems recognize as uniquely identifying that transaction.  Also, when a query command  

produces a result set containing multiple transactions, your software will need to know how to cross-

reference each transaction in the query result with the associated transaction data in your software 

application. 

 

For this reason, Provider_TransactionID is a required field when a Merchant submits transactions to 

SpeedChex for processing.  Although a GUID or some similar universally unique ID is recommended for 

this value, the only requirement for this field is that the Provider_TransactionID value be unique for each 

transaction under each merchant.   

 

 

Verification Using SpeedChex ExpressVerify 
 

Merchants may choose to sign up for an optional bank account verification service called SpeedChex 

Express Verify.  This service can report in real-time whether an account exists, or whether it is currently 

overdrawn, frozen or closed thus ascertaining whether a check is likely to be returned.   

 

The service returns a 3-letter verification status which can be “POS” (postive) indicating the bank account 

is found and in good standing, “NEG” (negative) indicating the accound does not exist or is not in good 

standing, and “UNK” (unknown) indicating the bank account does not belong to a participating bank.  

The code “ERR” (error) can also result if technical problems occurred verifying the account. 

 

Please see the document titled SpeedChex Express Verify Response Codes for a complete list of 

possible responses from the SpeedChex Express Verify system and their meanings.  

 



 Page 6 

Application Testing 
 

Merchants can test the SpeedChex Web Service API by simply including an optional field called 

TestMode and setting the value of that field to “On”.  Test commands sent with “TestMode=On” will 

receive valid responses from the SpeedChex Gateway but the command will not actually be processed by 

the SpeedChex system.   

 

The following information may be helpful when testing your application: 

 
Test Merchant Gateway Credentials 
MerchantID:  2001 
Merchant_GateID:  test 
Merchant_GateKey:  test 

  
Test Bank Account that Passes SpeedChex Express Verify 
Routing Number:  123123123 
Account Number:  <any number> 
 
Test Bank Account that Fails SpeedChex Express Verify 
Routing Number:  123123123 
Account Number:  987654321 

 
Please Note:  Merchant ID 2001 is a demo account.  If you send transactions using this Merchant ID and 

you do NOT set TestMode to “On”, any information you transmit may be viewed by users running the 

SpeedChex demo.  This includes names, addresses, phone numbers, and email addressees.   

 

 

Data Security and Protection 
 

Protecting the financial transaction data processed through SpeedChex is of utmost priority.  This means 

not only implementing the highest levels of security standards in data encryption and system security, but 

also setting strict controls that limit authorized access to sensitive information.    

 

Every Merchant is assigned a unique Merchant ID, GateID, and GateKey that must be kept confidential 

and will be required as part of each data packet sent to the SpeedChex Gateway.  In addition, an IP 

filtering scheme may be implemented to ensure that command packets are only accepted from IP 

addresses registered by the Merchant.   

 

 

Overview of the SpeedChex Gateway Command Process 
 

Integrating the SpeedChex Web Service API into your software application is not difficult.  The 

following is an overview of the major components of this task: 

 

• Data Gathering - Merchants are responsible for collecting and submitting all data associated 

with a remote deposit command. 

 

• Submitting a Gateway Command – Your software can use established SOAP 1.2 web 

service protocols to properly instantiate, populate and transmit a Transact_Command object 

for processing.  The rules for constructing and sending the commands are defined in the next 

section of this document titled General Implementation Rules and Specifications. 
 



 Page 7 

• Response Processing - The SpeedChex Gateway will return a Transact_Response object after 

it receives and processes the command.  The exact structure, format and meaning response 

object values will be based on the command issued as defined in the next section of this 

document titled General Implementation Rules and Specifications.    

 

 

General Implementation Rules and Specifications 
 

The SpeedChex Web Service API supports SOAP Version1.2 protocol for sending and receiving data 

through web service methods.  MTOM is also support for sending and receiving binary files as necessary. 

 

1. Web Service Endpoint  –  The following table shows the endpoint for the this web service and 

important proxy setup details:    

 

      Endpoint Address 

https://www.speedchex.com/webservices/transact.svc 

 Comments 

Please direct all proxy web service method calls and web reference or service reference proxy requests to this SSL 

secured Internet address.  

 

When using Microsoft Visual Studio 2008, create a Service Reference proxy to this URL to implement the 

advanced WS* features like MTOM.  

 

When using Microsoft Visual Studio 2005, create a Web Reference proxy to this URL, modify your project 

properties to support Web Services Enhancements (WSE). 

 

WSDL discovery can be accomplished by appending ‘?wsdl’ to the end of this address. 

 

  

2. The Transact_Command Class –  The Transact_Command class provides the object definition 

for all properties that can be defined when sending a command to the SpeedChex Gateway.   

 

The following table lists the basic command template properties of the Transact_Command class 

which apply to all gateway commands: 

 
The Transact_Command Class – Basic Command Template Properites 

   

Field Name Usage Field Value Format Constraints 

Command Required Set to the command you want the Transact Gateway to execute 

CommandVersion Required Set to 1.0 for this API documentation revision. 

TestMode Optional Set this value to On to test a command response.   

Merchant_Credentials (assign a new Transact_MerchantCredentials object to this property with the following fields) 

   .MerchantID  Required Provided to Merchant 

   .GateID Required Provided to Merchant 

   .GateKey Required Provided to Merchant 

<additional fields as required>  Based on the Command, you may be required to define additional 
fields to send in the Transact_Command object.  These fields will 
be defined in the various sections of this document below 
dedicated to each specific command. 

3. Web Service Methods  – The following web service method definition(s) exist for this API: 

 



 Page 8 

      Method Name 

  ExecuteCommand (Transact_Command object) returns a Transact_Response object 

Usage Rules and Information 

Required Create a new Transact_Command object, populate the fields in this object according to the 

rules defined in this API for the specific command that you wish to submit, and then call this 

method with your new Transact_Command object as its parameter. 

 

You will receive a Transact_Response object indicating whether the command succeeded or 

failed and any additional response information specifically related to the command issued. 

 

 

4. The Transact_Response Class  – In response to an ExecuteCommand web service method, the 

SpeedChex Gateway will always send a Transact_Response object indicating whether the 

command succeeded or failed and any additional information specifically related to the command 

issued.   

 

The following table defines the structure of the Transact_Response object with an explanation 

about the field values that will be returned in every response:    

 

The Transact_Response Class 

   

FieldName Value Format Constraints 
Max 

Length 
Purpose 

ResponseCode A 3 digit code representing the reason  
for the command response. 
 
Please refer to the table in Appendix A - 
Response Code Definitions. 

3 Provides a simple response 
code indicating success or 
reason for command failure.   

Description Please refer to the table in Appendix A - 
Response Code Definitions. 

255 
 

A brief explanation of the 
ResponseCode value 

ErrorInformation Additional information helpful to 
determine the source of an error.   
 
Please refer to the table in Appendix A - 
Response Code Definitions. 

50 If the command failed, extra 
information about the error may 
be provided in this field. 

ResponseData Please see the documentation for the 
specific command to be issued for an 
explanation of the possible value(s) for 
this field. 

 This is a generic object that can 
take the form of any scalar or 
complex object called for by the 
command that is issued. 

Transact_ReferenceID A unique reference code assigned to 
each command.   

30 This value can be used for as a 
unique transaction identifier or 
for support on any command. 

 

 

 

 



 Page 9 

Transaction Commands  
 

 

Command:  RemoteDepositBatch.CreateNewBatch 
 

Description:  Creates a new Remote Deposit Batch in a batch state of ‘Hold for Review’ for placing, managing 
 and utlimately processing scanned checks for remote deposit.  The following table defines the 
 data field rules for this command: 
 

Field Name Usage Field Value Format Constraints 
Max 

Length 

Command Required Set to RemoteDepositBatch.CreateBatch 50 

CommandVersion Required Set to 1.0 for this API documentation revision. - 

TestMode Optional Set this value to On to test a command response.   3 

Merchant_Credentials Required Please refer to the Basic Command Template for details - 

BatchID Required A unique ID for this new Remote Deposit Batch. 50 

 

  



 Page 10 

Transaction Commands 
 

 

Command:  RemoteDepositBatch.AddTransaction 
 

Description:  Adds a new check to an existing Remote Deposit Batch.  The following table defines the data 
 field rules for this command: 
 

Field Name Usage Field Value Format Constraints 
Max 

Length 

Command Required Set to RemoteDepositBatch.AddTransaction 50 

CommandVersion Required Set to 1.0 for this API documentation revision. - 

TestMode Optional Set this value to On to test a command response.   3 

Merchant_Credentials Required Please refer to the Basic Command Template for details - 

Provider_TransactionID Required Unique ID assigned to this transaction by the Merchant.   
Required if this command is part of a batch CommandArray.   

50 

BatchID Required The ID of the new or existing Remote Deposit Batch to which this 
transaction is to be added. 

50 

CheckType Required Value must be Personal, Business, Money Order,  
Cashiers Check, or Travellers Check. 

16 

CheckNumber Conditional * The check number printed on the check.    25 

RoutingNumber Conditional * 9-digit ABA routing number on customer’s check.   9 

AccountNumber Conditional * Customer’s bank account number.   30 

Amount Conditional * The amount of the check.  Do not include $ sign or comma.   - 

Raw_MICR_Line Required The raw MICR line exactly as it was captured by the scanner.  
Please refer to the section of this document titled Appendix B – 
Raw MICR Line Format for special text formatting instructions. 

100 

CheckImage_Front Required A btye array of the binary image of the front of the check. - 

CheckImage_Back Required A btye array of the binary image of the back of the check. - 

Billing_CustomerID Optional The unique internal ID assigned to this customer.   50 

Billing_CustomerName Optional Customer’s Name 80 

Billing_Company Optional Company Name 80 

Billing_Address1 Optional Customer’s address 70 

Billing_Address2 Optional Customer’s address 40 

Billing_City Optional Customer’s city 70 

Billing_State Optional Accepts any valid state name or 2 letter abbreviation. 20 

Billing_Zip Optional Customer’s zip.  (Format:  ##### or  #####-####) 10 

Billing_Phone Optional Customer’s phone. Any format, but must contain 10 digits 20 

Billing_Email Optional Customer’s email address.  This field is required if the 
SendEmailToCustomer field value is Yes 

80 

Merchant_ReferenceID Optional The unique internal ID or invoice number assigned to this 
transaction by the merchant 

40 

Description Optional A description of this transaction 100 

Run_ExpressVerify Required Value must be either Yes or No.   . 3 

Run_SmartScan Required Value must be either Yes or No.   3 

SECCode Conditional * Values must be one of the following:  POP, BOC or ARC.  Please 
refer to the section of this document entitled Important Rules 
Regarding Customer Notification and SEC Codes. 

3 

 

* These fields are Required if the transaction is assigned to a batch whose state is set to ‘Mark for Deposit’  



 Page 11 

Transaction Commands 
 

 

Command:  RemoteDepositBatch.UploadBatch 
 

Description:  Executes an array of RemoteDepositBatch.AddTransaction commands allowing you to add 
 multiple transactions in “batch mode” to a new or existing Remote Deposit Batch.  This 
 command is equivalent to sending a RemoteDepositBatch.CreateNewBatch command and 
 then sending multiple RemoteDepositBatch.AddTransaction commands each separately. 
 
 The following table defines the data field rules for this command: 
 

Field Name Usage Field Value Format Constraints 
Max 

Length 

Command Required Set to RemoteDepositBatch.UploadBatch 50 

CommandVersion Required Set to 1.0 for this API documentation revision. - 

TestMode Optional Set this value to On to test a command response.   3 

Merchant_Credentials Required Please refer to the Basic Command Template for details - 

BatchID Required The ID of a new or existing Remote Deposit Batch to which the 
transactions in the CommandArray will be assigned. 

50 

BatchState Conditional Value must be either Hold for Review or Mark for Deposit.  
Only required when creating a new Remote Deposit Batch.  This 
field is ignored if the Remote Deposit Batch already exists.    

25 

LocationName Optional Any location category pre-defined in SpeedChex administration 50 

DateScheduled Conditional The date to process this batch for deposit.  Only required when 
creating a new batch and the BatchState is Mark for Deposit.  
This field is ignored otherwise.   Format:  “MM/DD/YYYY” (string) 

10 

CommandArray Required An array of new RemoteDepositBatch.AddTransaction 
commands. 
 
Please refer the RemoteDepositBatch.AddTransaction 
command for a list of required and optional fields and rules for 
data that must be submitted with each command in this array. 
 
Special Note:  The following fields do not need to be defined for 
each RemoteDepositBatch.AddTransaction command object in 
this array because their values are already defined in the parent  
RemoteDepositBatch.UploadBatch command: 
 

• Provider_Credentials 
• Merchant_Credentials 
• BatchID 
• TestMode 

 
An error in any RemoteDepositBatch.AddTransaction command 
in this array will result in a general error for this parent command 
and a rejection of all transactions in the array. 

- 

 

  Response:  If the response to this UploadBatch command is an error caused by one of the AddTransaction 

 commands in the CommandArray, the Error_Information field in reponse object will prefix the error 
 information value with “CommandArray:”  For example, if the CheckType field was missing from a 
 command in the CommandArray, the ResponseCode value would be “002” and the value of the
 Error_Information field would be “CommandArray:CheckType”. 
    

 In addition, the ResponseData field of the reponse will contain the exact Transact_Command 
 object from the CommandArray causing the error.  The Provider_TransactionID field value in that 
 command can then be used to help you find the transaction causing of the problem. 

  



 Page 12 

Transaction Commands 
 

 

 

 

Command:  RemoteDepositBatch.VoidBatch 
 

Description:  Cancels a Remote Deposit Batch that has not yet been sent to the Federal Reserve.  All 
 transaction data and images associated with the batch will be deleted permanently..  The 
 following table defines the data field rules for this command: 
 

Field Name Usage Field Value Format Constraints 
Max 

Length 

Command Required Set to RemoteDepositBatch.VoidBatch 50 

CommandVersion Required Set to 1.0 for this API documentation revision. - 

TestMode Optional Set this value to On to test a command response.   3 

Merchant_Credentials Required Please refer to the Basic Command Template for details - 

BatchID Required A unique ID for this new Remote Deposit Batch. 50 

 

  



 Page 13 

Sample Client Code - Uploading a batch with the RemoteDepositBatch.BatchUpload command 

 
Visual Basic.NET Sample Code 

 'Define the web service client object 
Dim Transact_WebService As New Transact_WebServiceClient 
 
'Create the new Transact_Command object to send to the web service 
Dim BatchUpload_Command As New Transact_Command 
 
‘Create a new Transact_MerchantCredential objects and populate the gateway credential data 
Dim MerchantCredentials As New Transact_MerchantCredentials 
MerchantCredentials.MerchantID = "2001" 
MerchantCredentials.GateID = "test" 
MerchantCredentials.GateKey = "test" 
 
'Specify the command to issue to the SpeedChex Gateway 
BatchUpload_Command.Command = "RemoteDepositBatch.UploadBatch" 
BatchUpload_Command.CommandVersion = "1.0" 
 
'Assign the gateway credential objects to the command 
BatchUpload_Command.Merchant_Credentials = MerchantCredentials 
BatchUpload_Command.Provider_Credentials = ProviderCredentials 
 
'Define the information specific to the Remote Deposit Batch being created/uploaded 
'    Suggestion: create a date based BatchID or use a GUID to ensure a unique ID for each new batch. 
BatchUpload_Command.BatchID = "2001_" & Today.ToString("yyyy_MM_dd") & "_001" 
BatchUpload_Command.BatchState = "Mark for Deposit" 
BatchUpload_Command.DateScheduled = Today.Date 
 
'Create a new generic array that will hold the batch of RemoteDepositBatch.AddTransaction command objects 
Dim myCommandArray As New ArrayList 
 
'Iterate through your database to populate and add each "AddTransaction" command object to the array 
For Each myDataRow In MyDataTable 
            'Create a new Transact_Command object to put into the CommandArray 
            Dim AddCheck_Command As New Transact_Command 
 
            'Specify the RemoteDepositBatch.AddTransaction as the command to execute when this CommandArray is processed 
            AddCheck_Command.Command = "RemoteDepositBatch.AddTransaction" 
            AddCheck_Command.CommandVersion = "1.0" 
 
            'Define the unique ID you have assigned to this transaction internally for later status tracking, etc. 
            AddCheck_Command.Provider_TransactionID = myDataRow.myUniqueTransactionID 
 
            'Assign known or captured check information to command 
            AddCheck_Command.RoutingNumber = myDataRow.RoutingNumber 
            AddCheck_Command.AccountNumber = myDataRow.AccountNumber 
            AddCheck_Command.Amount = myDataRow.Amount 
            '  ...  etc. for all optional or required check information fields  
 
            'Assign the byte array of captured check images 
            AddCheck_Command.CheckImage_Front = System.IO.File.ReadAllBytes("c:\FrontOfCheck.tif") 
            AddCheck_Command.CheckImage_Back = System.IO.File.ReadAllBytes("c:\BackOfCheck.tif") 
 
            'Add this command to the CommandArray object 
            myCommandArray.Add(AddCheck_Command) 
Next 
 
'When the batch (CommandArray) of commands is complete, assigned array to the BatchUpload_Command object  
BatchUpload_Command.CommandArray = myCommandArray.ToArray 
 
  
***** Viisual Basic.Net Sample Code Continued on Next Page ***** 
 



 Page 14 

Sample Client Code - Uploading a batch with the RemoteDepositBatch.BatchUpload command 

 
Visual Basic.NET Sample Code (continued…) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
'**************************************************************************************************** 
'*   Ready to submit the BatchUpload_Command to the SpeedChex Gateway 
'**************************************************************************************************** 
 
'Create a Transact_Response object to receive the response from the gateway 
Dim BatchUpload_Response As Transact_Response 
 
'Execute the Transact Gateway command 
BatchUpload_Response = Transact_WebService.ExecuteCommand(BatchUpload_Command) 
 
 
'Parse the response 
If BatchUpload_Response.ResponseCode = "000" Then 
       'Write code related to successful response here 
 
Else 
       'Batch upload failed.  Parse the reason 
       Select Case BatchUpload_Response.ResponseCode 
             Case "001" 
                    'Write error handling code here 
              Case "002" 
                    'Write error handling code here 
                    'Add additional parsing cases to handle all possible responses 
                    '... 
                    '   additional Case statement as necessary 
                    '... 
       End Select 
End If 
 



 Page 15 

Sample Client Code - Uploading a batch with the RemoteDepositBatch.BatchUpload command 

 
C#.NET Sample Code 

 //Define the web service client object  
Transact_WebServiceClient Transact_WebService = new Transact_WebServiceClient();  
 
//Create the new Transact_Command object to send to the web service  
Transact_Command BatchUpload_Command = new Transact_Command();  
 
//Create a new Transact_MerchantCredential objects and populate the gateway credential data 
Transact_MerchantCredentials MerchantCredentials = new Transact_MerchantCredentials();  
MerchantCredentials.MerchantID = "2001";  
MerchantCredentials.GateID = "test";  
MerchantCredentials.GateKey = "test";  
 
//Specify the command to issue to the SpeedChex Gateway  
BatchUpload_Command.Command = "RemoteDepositBatch.UploadBatch";  
BatchUpload_Command.CommandVersion = "1.0";  
 
//Assign the gateway credential objects to the command  
BatchUpload_Command.Merchant_Credentials = MerchantCredentials;  
BatchUpload_Command.Provider_Credentials = ProviderCredentials;  
 
//Define the information specific to the Remote Deposit Batch being created/uploaded  
// Suggestion: create a date based BatchID or use a GUID to ensure a unique ID for each new batch.  
BatchUpload_Command.BatchID = "2001_" + Today.ToString("yyyy_MM_dd") + "_001";  
BatchUpload_Command.BatchState = "Mark for Deposit";  
BatchUpload_Command.DateScheduled = Today.Date;  
 
//Create a new generic array that will hold the batch of RemoteDepositBatch.AddTransaction command objects  
ArrayList myCommandArray = new ArrayList();  
 
//Iterate through your database to populate and add each "AddTransaction" command object to the array  
foreach ( myDataRow in MyDataTable) {  
    //Create a new Transact_Command object to put into the CommandArray  
    Transact_Command AddCheck_Command = new Transact_Command();  
     
    //Specify the RemoteDepositBatch.AddTransaction as the command to execute when this CommandArray is processed  
    AddCheck_Command.Command = "RemoteDepositBatch.AddTransaction";  
    AddCheck_Command.CommandVersion = "1.0";  
     
    //Define the unique ID you have assigned to this transaction internally for later status tracking, etc.  
    AddCheck_Command.Provider_TransactionID = myDataRow.myUniqueTransactionID;  
     
    //Assign known or captured check information to command  
    AddCheck_Command.RoutingNumber = myDataRow.RoutingNumber;  
    AddCheck_Command.AccountNumber = myDataRow.AccountNumber;  
    AddCheck_Command.Amount = myDataRow.Amount;  
    // ...  etc. for all optional or required check information fields  
    AddCheck_Command.SECCode = "BOC";  
     
    //Assigned the byte array of captured check images  
    AddCheck_Command.CheckImage_Front = System.IO.File.ReadAllBytes("c:\\FrontOfCheck.tif");  
    AddCheck_Command.CheckImage_Back = System.IO.File.ReadAllBytes("c:\\BackOfCheck.tif");  
     
    //Add this command to the CommandArray object  
    myCommandArray.Add(AddCheck_Command);  
}  
 
//When the batch (CommandArray) of commands is complete, assigned array to the BatchUpload_Command object  
BatchUpload_Command.CommandArray = myCommandArray.ToArray;  
 
 
***** C#.Net Sample Code Continued on Next Page ***** 



 Page 16 

Sample Client Code - Uploading a batch with the RemoteDepositBatch.BatchUpload command 

 
C#.NET Sample Code (continued…) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

//********************************************************************************************  
//* Submit the BatchUpload_Command to the SpeedChex Transact Gateway  
//********************************************************************************************  
 
//Create a Transact_Response object to receive the response from the gateway  
Transact_Response BatchUpload_Response;  
 
//Execute the Transact Gateway command  
BatchUpload_Response = Transact_WebService.ExecuteCommand(BatchUpload_Command);  
 
//Parse the response  
if (BatchUpload_Response.ResponseCode == "000") {  

//Write code related to successful response here  
}  
else {  
    //Batch upload failed. Parse the reason  
    switch (BatchUpload_Response.ResponseCode) {  
        case "001":  

 //Write error handling code here  
             break;  
         case "002":  

 //Write error handling code here  
break;  

         
         //Add additional parsing cases to handle all possible responses  
   }  
}  
 



 Page 17 

Appendix A – Response Code Definitions 

 

Response 
Code Description 

Contents of the 
ErrorInformation Field 

GATEWAY COMMAND SUCCESS 

000 Command Successful.  Approved.  

GATEWAY COMMAND ERRORS 

100 Invalid Gateway Credentials  

101 Invalid Gateway Command  

102 Duplicate Command Not Processed 
Transact_ReferenceID of 

the original Command 

103 Transaction Cannot Be Modified Transaction Status 

104 Batch Cannot Be Modified Batch Status 

105 Invalid Transact_ReferenceID  

106 Invalid BatchID  

107 Non-Unique Reference/Transaction ID  

108 Invalid Reference/Transaction ID  

109 Invalid Source IP  

110 Invalid Value In Message  

INPUT DATA VALIDATION ERRORS 

150 Required Field Missing Field Name 

151 Field Value Is Not Valid Field Name 

152 Field Value Exceeds Maximum Length Field Name 

PAYMENT ACCOUNT VERIFICATION FAILURES 

200 Failed AVS  

201 Failed CVN  

202 Failed Express Verify  

203 Invalid Credit Card Number  

204 No Such Card Issuer  

205 Expired Card   

206 Invalid Expiration Date   

208 Call Issuer for Further Information  

209 Invalid Routing Number  

210 Invalid Bank Account Number  

211 Invalid PIN  

212 Invalid PaymentKey  

PAYMENT ACCOUNT DECLINES 

300 Transaction was Declined by Processor  

301 Transaction was Rejected by Gateway  

302 No Card Number on File with Issuer  

304 Invalid Account Type  

305 Account Closed  

306 Account Inactive  

Response Code Defintions Continued on Next Page4 

 



 Page 18 

Appendix A – Response Code Definitions 

 

Response 
Code Description 

Contents of the 
ErrorInformation Field 

PAYMENT ACCOUNT DECLINES (continued4) 

307 Account Frozen  

309 Insufficient Funds  

310 Over Limit  

311 Do Not Honor  

312 Transaction Not Allowed  

313 Invalid for Debit  

314 Invalid for Credit  

315 Customer Opt Out  

316 Customer Advises Not Authorized  

317 Manual Key Not Allowed  

318 Duplicate Transaction at Processor  

FRAUD DECLINES 

400 Pick Up Card  

401 Lost Card  

402 Stolen Card  

403 Fraudulant Card  

404 Excessive Declines From Same Source  

405 Excessive PIN Attempts  

406 Excessive Purchase Frequency  

MERCHANT DIRECTIVES FROM PROCESSOR 

500 Declined - Stop All Recurring Payments  

501 Declined - Update Cardholder Data Available  

502 Declined - Further Instructions Available Instructions 

503 
Declined - Call Processor for Voice 
Authorization  

504 Declined - Call Processor for Fraud Instructions  

PROCESSOR ADMINISTRATIVE ERRORS 

600 Internal Gateway Error  

601 Internal Processor Error  

602 Communication Error with Issuer  

603 Communication Error with Processor  

604 Processor Feature Not Available  

605 Processor Format Error  

606 Invalid Terminal Number  

607 Merchant Not Setup  

608 Merchant Account is Inactive  

609 Invalid Merchant Configuration  

610 Invalid Payment Method for Merchant  

611 Unsupported Card Type  

OTHER 

999 Contact Support Representative  

 



 Page 19 

Appendix B – Raw MICR Line Format 

 

The raw MICR line at the bottom of a check contains special characters that cannot be transmitted in a 

string field.  As a result, the value supplied for the Raw MICR Line must use the following letters to 

represent the following potential special characters found on the bottom of the check: 

 

T = Transit Symbol 

U = OnUs Symbol 

B = Blank (space) 

D = Dash Symbol 

A = Amount Symbol 

E = Error or Unknown character 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Page 20 

Implementation Support 

 

If you need help understanding this documentation or with any of the details of integrating the SpeedChex 

Web Service API into your application, please do not hesitate to contact our support staff by email at 

support@speedchex.com.   

 

If you need to speak to a support team member, please put your name and phone number on the email and 

the best time to call. 

 

 

 


